
New Product Development &

Re-Engineering
Products

THE DEVELOPMENT ITINERARY

Overview

INNOVATION

Intended Flowchart of Activity

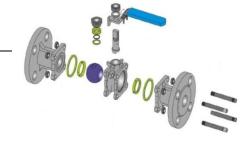
PHASE 1

TRIAL PROJECT

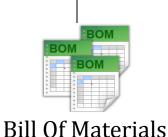
PHASE 2

Implementation of Phase 1
Analysis to Product

THE DFMA APPROACH



Description of Work


(1) Identification of one Product /Assembly subassembly for project

(2) Data collection for the project

Drawings

田

S

A

Description of Work

(3) Data Input to the DFMA software. CLIENT Members can also be involved in the activity

(4) Analysis and Interpretation of the DFMA Results

Spreadsheets

Description of Work

(5) Redesign Options

Leaner Design Suggestions Reduce part count, Simplify assembly time and cost, Suggestions for alternate materials, fastening methods, etc.

(6) Summary and Reporting

Duration

 \vdash

PHASE

Assembly size	Duration	
	Data Collect	ion Analysis
15 - 30Parts	@ 4- 6 Days	@10-12 Days
30 - 50Parts	@ 4-8 Days	@10-18 Days
50 -100Parts	@ 4-10 Days	@14-24 Days

RE-ENGINEER

D-ESPAT (DEPL) will Provide

- DFMA consultant(s)
- •DFMA software

CLIENT To Provide

- Consultant Charges
- •Interaction member(s) who will assist in collecting the required data for the process
- Participating team from CLIENT . It would be a HANDS-ON training for the participants

Phases of the Innovation Process

Formation of a Cross-Functional team consisting participant from (1)R&D / Production (2)Sales & Marketing / Quality

STEP 1

Team Analyses of the assembly structure.

STEP 2

(Acknowledging the different difficulties assembling the present product)

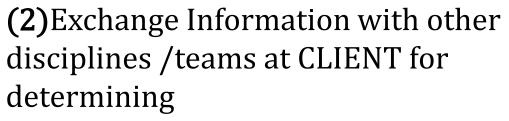
Filling the DFMA Work Sheet - This gives the DFMA team the opportunity to define optimum product, eliminating unnecessary parts/components

STEP 3

Arriving to realistic cost estimation of (STEP 4 the analyzed product

Defining the problems arising while assembling the product

STEP 5



Redesign Activity

N

HASE

(1) Pursue the Phase 1 Assembly for Development and Implementation

- A. Redesign Options
- B. Redesign Cost and Time
- C. Cost Of Implementation

Redesign Activity

N

HASE

(3) Discussion and Selection

- A. Material And Processes
- B. Further Part Count Reduction
- C. New Design integration in Product Assembly
- D. Tooling costs
- D. Return on Investment

Probable Achievement

2

HASE

Assembly size	@ Reductions In Part Count	@COST Savings for CLIENT
15 - 30Parts	@ 15% - 60%	@30% - 50%
30 - 50Parts	@ 30%- 70%	@40% - 65%
50 -100Parts	@ 25%- 75%	@35% - 75%

Duration

2

PHASE

Assembly size	@ Redesign
	Duration
15 - 30Parts	@12-18 Days
31 - 50Parts	@20-30 Days
51 -100Parts	@25-45 Days
101 – 200Parts	@30- 60 Days
	10 12 12

COLLABORATION

DEPL will facilitate

- •DFMA consultation to explore possible solution to design problems and suggest the same .
- •Seek expert advice from our DFMA principles and business partners to achieve feasible and cost effective solutions.
- Assist in validating feasibility of solution obtained
- •Interact with CLIENT's Team members, participants & partners (vendors and suppliers), if CLIENT so wishes ,to derive optimal solution.

COLLABORATION

CLIENT will facilitate

- •Involving department members concerned to validate solutions reached
- Provide their expert advice, comments, suggestions to assist in developing the new design or modifications to the existing component(s).
- Probable suggestions to identify further part count reductions and product simplification.
- •Involve members concerned to calculate costing, returns on investment and other aspects involved with implementing the design.

Phases of the Innovation **Process**

The team will work proposals on how to improve the product design

STEP 6

Getting creative ...to reduce parts And redesign remaining parts.

STEP 7

Rework proposals to ensure product design is able to fulfill your requirements

STEP 8

Summary

T he aim is to assist the CLIENT to improve their product competitiveness in terms of

- Faster Production
- Leaner with Simpler Assembly procedures
- Robust Products which are cheaper to manufacture
- Simplicity in service and maintenance
- Reduced time /cost of New product to market

